Bayes estimation in linear models: A coordinate-free approach

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Empirical Bayes Variable Selection and Estimation in Linear Models

We propose an empirical Bayes method for variable selection and coefficient estimation in linear regression models. The method is based on a particular hierarchical Bayes formulation, and the empirical Bayes estimator is shown to be closely related to the LASSO estimator. Such a connection allows us to take advantage of the recently developed quick LASSO algorithm to compute the empirical Bayes...

متن کامل

Linear Bayes Estimation of a Cumulative Hazard

We propose a linear Bayes estimator of the cumulative hazard of a survival distribution, based on iid survival times, possibly right censored and left truncated. The resulting estimator is recognized as an exact Bayes estimator under more restrictive model assumptions and verified to have the minimax property.

متن کامل

Robust Estimation in Linear Regression with Molticollinearity and Sparse Models

‎One of the factors affecting the statistical analysis of the data is the presence of outliers‎. ‎The methods which are not affected by the outliers are called robust methods‎. ‎Robust regression methods are robust estimation methods of regression model parameters in the presence of outliers‎. ‎Besides outliers‎, ‎the linear dependency of regressor variables‎, ‎which is called multicollinearity...

متن کامل

BAYES ESTIMATION USING A LINEX LOSS FUNCTION

This paper considers estimation of normal mean ? when the variance is unknown, using the LINEX loss function. The unique Bayes estimate of ? is obtained when the precision parameter has an Inverse Gaussian prior density

متن کامل

A Competitive Minimax Approach to Robust Estimation in Linear Models

We consider the problem of estimating, in the presence of model uncertainties, a random vector x that is observed through a linear transformation H and corrupted by additive noise. We first assume that both the covariance of x and the transformation H are not completely specified, and develop the linear estimator that minimizes the worst-case mean-squared error (MSE) across all possible covaria...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Multivariate Analysis

سال: 1983

ISSN: 0047-259X

DOI: 10.1016/0047-259x(83)90004-0